I Conferencia Internacional sobre la Gestión de Residuos Sólidos en América Latina – GRAL 2009 *Quito, Ecuador -- 23 al 25 de Junio, 2009*

La Aplicación del Tratamiento Biológico para el Manejo de los Residuos Orgánicos

L.F. Diaz
CalRecovery, Inc.
Concord, California USA
ludiaz@calrecovery.com

iwwg

Contenido

- Manejo Integral de los Residuos
- Jerarquía del Manejo Integral
- Tipos de tecnologías
- Procesos biológicos
- Tecnología alta versus baja
- Conclusiones y Resumen

Manejo Integral de los RSU

 Selección y uso de programas gerenciales, técnicas y tecnologías apropiadas para llegar a objetivos específicos de manejo de los residuos

Manejo Integral de los RSU

- En varios casos, integración ha sido limitada a las principales fases del manejo de los residuos (almacenamiento, recolección, transporte, transferencia, etc.)
- Adecuada integración debe considerar e incluir un numero de aspectos importantes: salud publica, sociales, políticos, legislativos y reglamentos, económicos, educativos y otros para tener éxito

Jerarquía del Manejo Integral de los RSU

- Una jerarquía ha sido propuesta y adoptada por varios países para poner en orden de prioridad acciones e iniciar programas:
 - Reducción
 - Reciclaje
 - Transformación
 - Disposición en el suelo

Prioridades para Ciudades en Países en Vías de Desarrollo

- Jerarquía adoptada por varias ciudades en países industrializados es posible no sea adecuada para países en vías de desarrollo
- Una de las primeras prioridades podría ser reducir la cantidad de materia orgánica que entra al flujo de los residuos
- Materia orgánica generalmente es uno de los principales componentes de los RSU

Cantidad y Composición de los RSU en Algunos Países en Vías de Desarrollo (% peso húmedo)

Material	Ulaanbaatar, Mongolia	Quezon City, Filipinas	Olongapo City, Filipinas	Lima, Peru	Buenos Aires, Argentina
Materia Orgánica	24.0	52.0	44.4	34.3	30.5
Papel	12.9	17.1	17.5	24.3	22.9
Metales	2.5	3.2	3.1	3.4	5.1
Vidrio	6.4	3.1	2.0	1.7	2.8
Plásticos, caucho, cuero	13.1	22.0	8.7	2.9	14.6
Textiles	4.4	0.3	2.9	1.7	2.5
Cerámicas, polvo,	36.7	2.3	21.4	31.7	21.6

0.55

Fuente: CalRecovery y UNEP, 2005.

0.33

piedras

kg/cap/día

Callinedovery

0.96

0.3 to 1.0

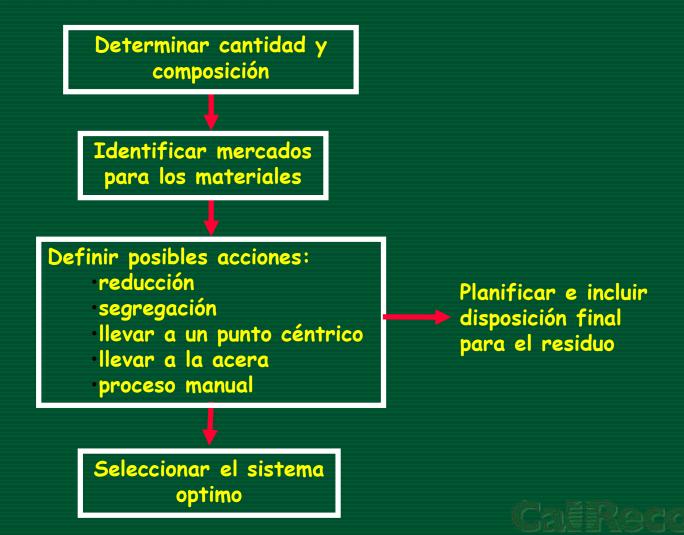
0.44

Tipos Generales de Tecnologías

- Físico-Químicas
- Térmicas
- Biológicas

Fuentes:

Diaz, L.F., G.M. Savage, and C.G. Golueke, Resource Recovery from Municipal Solid Wastes, Volume II, CRC Press, Inc., 1982 Bilitewski, B., et al., Waste Management, Springer, Berlin, 1994


Recuperación de Recursos

- La recuperación de recursos de los RSM juega un rol muy importante en el manejo de los residuos sólidos
- Hay una gran variedad de sistemas y de equipos para el reciclaje y el compostaje
- Los procesos deben de ser seleccionados cuidadosamente e "integrados" para poder llegar a altas tasas de reciclaje con costos razonables

Recuperación de Recursos

- La estrategia para la recuperación de recursos debe de seguir una secuencia lógica
- La secuencia se muestra en el próximo diagrama
- Objetivo principal es la protección de la salud publica y la protección del medio ambiente

Recuperación de Recursos de los Residuos Sólidos

Reciclaje

Recolección:

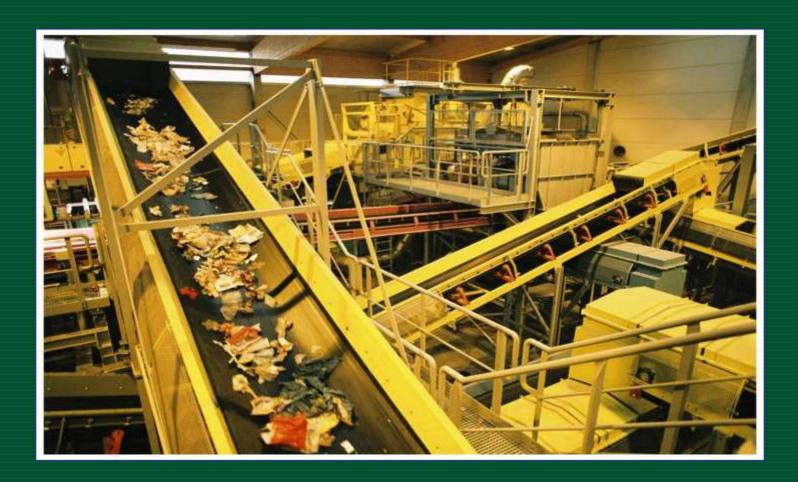
- co-recolección
- recolección diferenciada (segregacion en la fuente)
- incentivos

Procesos:

- instalaciones para la recuperación de materiales
- compostaje
- residuos especiales

Otros pasos Importantes para poner en marcha programas de Reciclaje

- Identificar oportunidades para la prevención de los residuos
- Seleccionar opciones viables en base a las condiciones locales
- Integrar las opciones y optimizar todo el sistema de gerenciamiento de los residuos


Otras Consideraciones

- Método de recolección debe de ser complementario con el sistema de procesamiento (segregados vs mezclados)
- Capacidad de pago
- Necesidad de empleo
- Segregadores (incorporarlos en el proceso)

Ejemplo de segregación manual

Ejemplo de instalación completamente mecanizada

Compostaje

- Método para el tratamiento biológico de los residuos en el cual la materia orgánica es estabilizada bajo condiciones controladas
- Palabras clave:
 - biológico
 - estabilización
 - condiciones controladas
- co-compostaje:
 - compostaje de dos o mas residuos juntos

Beneficios del Compostaje

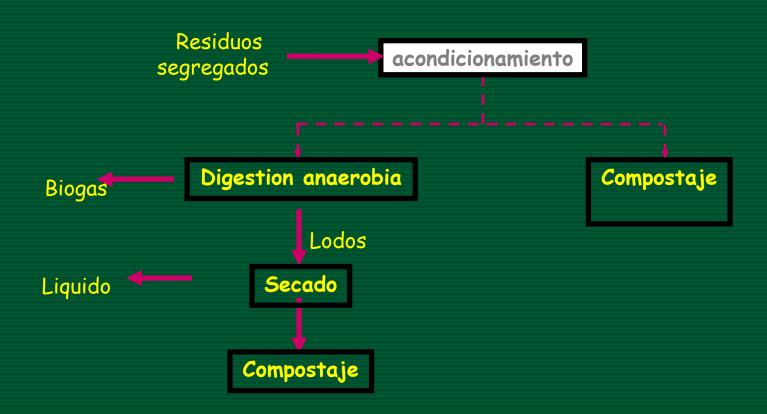
- Recuperación de la materia orgánica
- Extensión de la vida útil del relleno sanitario

Maquinas con propio modo de propulsión

Califredovery

Beneficios del Compostaje (cont.)

- Beneficios al suelo:
 - mejora la aireación
 - mejora la capacidad de retención del agua
 - mejora la eficiencia en el uso de fertilizantes inorgánicos
- Incrementa la resistencia de cultivos a ciertas enfermedades
- Reduce la erosión


Riesgos relacionados con el compostaje

- Técnicos
- Financieros
- Mercados
- Ambientales
- Salud publica

Sub-sistemas basicos de compostaje

- Pre-procesamiento:
 - separación
 - trituración
- Compostaje:
 - mezclado
 - aeración
 - control de humedad
- Post-procesamiento:
 - trituración
 - cribado
 - embolsado

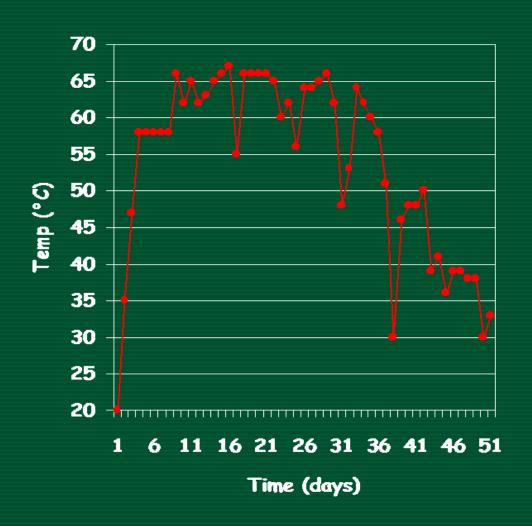
Procesamiento de residuos biologicos segregados/ Compostaje

Clasificacion de sistemas de compostaje

- Uso de Oxigeno:
 - aeróbio
 - anaeróbio
- Temperatura:
 - mesofilico
 - termofilico
- Aspectos Técnicos:
 - pilas
 - reactores

Factores que controlan la tasa de Compostaje

- Contenido de humedad
- Temperatura
- Nutrientes- concentración y disponibilidad:
 - C/N
- Concentración de oxigeno
- pH
- Granulometría


Seguimiento del Proceso

- Cambios de temperatura
- Olores
- Concentracion de O₂ y CO₂
- Grado de estabilidad

Factores Importantes que Afectan el Uso y los Mercados para el Compost

- Calidad del Producto:
 - nivel de contaminación:
 - metales pesados
 - patógenos
 - vidrio
 - plástico
 - estabilidad
 - contenido de nutrientes

Cambios de temperatura típicos en una pila de compost

Procesos Biológicos

- Compostaje
- Digestión Anaerobia:
 - en rellenos
 - en reactores:
 - húmeda (5 a 10% materia sólida seca)
 - seca (>30% materia sólida seca)

Sistemas de Compostaje - Clasificaciones

Basado en el confinamiento:

- abierto
- confinado

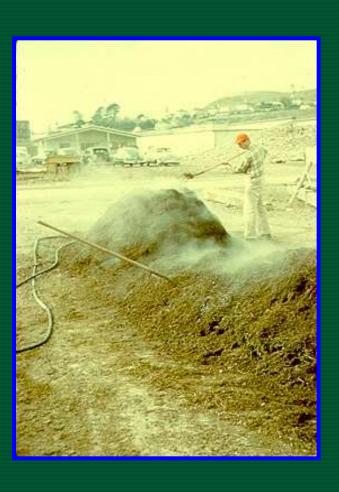
Basado en el método de cargar:

- continuo
- discontinuo

Basado en contenido:

- pilas
- bioreactor

Compostaje en Pilas


Método de proveer oxigeno y humedad a la biomasa:

- estática
- aireación forzada:
 - cubiertas sintéticas
 - bolsas plásticas
- volteo mecanizado
- volteo mecanizado con aireación forzada

Métodos Usados para el Volteo

- Manual
- Maquinas con propio modo de propulsión, movimiento sobre las pilas
- Poder del tractor u otra maquina
- Banda transportadora elevada
- Rotor que corta por los lados

Compostaje - Volteo Manual

Promover Tecnología Simple (cont.)

- Utilizar procesos manuales
- Escalas medianas y grandes:
 - Dar preferencia a unidades producidas localmente siempre y cuando han sido probadas
 - Seleccionar tecnologías simples

Calified over/y

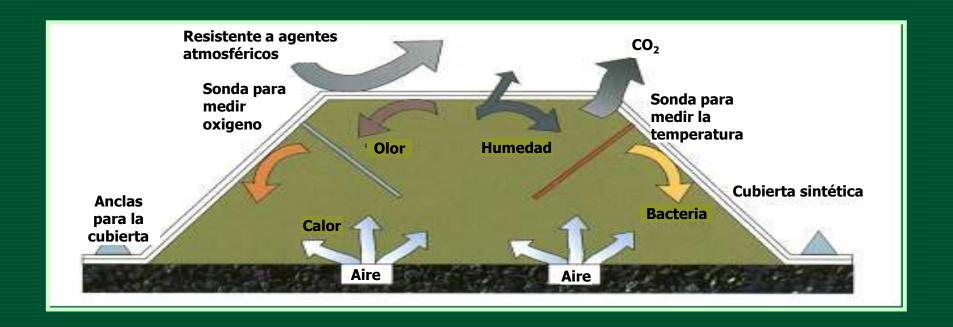
Compostaje en Pilas

- Pilas con volteo, pilas estáticas con aeración forzada, e instalaciones cerradas
- Control de emisiones y de olores
- Diseñadores deben de tener experiencia en Ingenieria Mecánica/Civil/Geotécnica

Callife do yer

Maquinas para el volteo de pilas pequeñas

Maquinas con propio modo de propulsión equipadas con Sistema de irrigación



Detalles del Rotor que corta de lado halado por Tractor

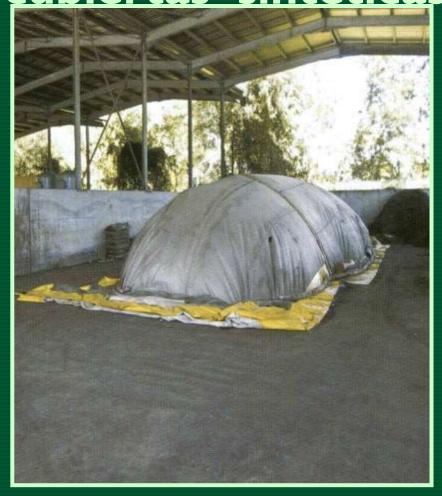


Diagrama de flujo de gases en una pila con cubierta sintética

Pilas con aireación forzada bajo cubiertas sintéticas

Pilas Estáticas con Aireación Forzada

Vista de la Tolva de Carga de las Bolsas Plásticas para compostaje

Bioreactores

- Encerrados, estructura rígida o reactor
- Generalmente usado para la primera fase del proceso de compostaje

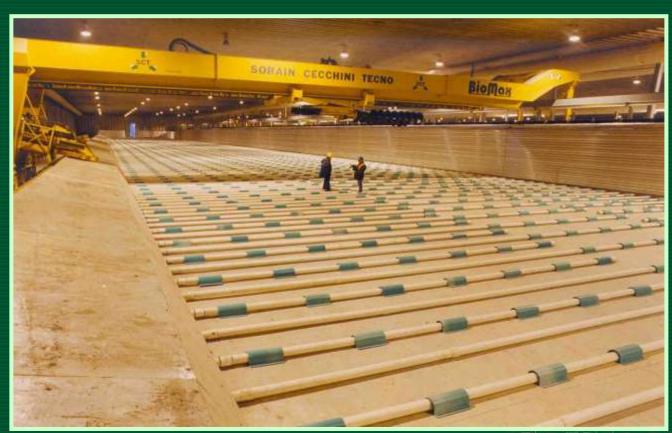
Bioreactores

Pueden ser divididos en:

- verticales
- horizontales
- con canales
- con celdas
- con contenedores
- con túneles
- con cilindros rotatorios

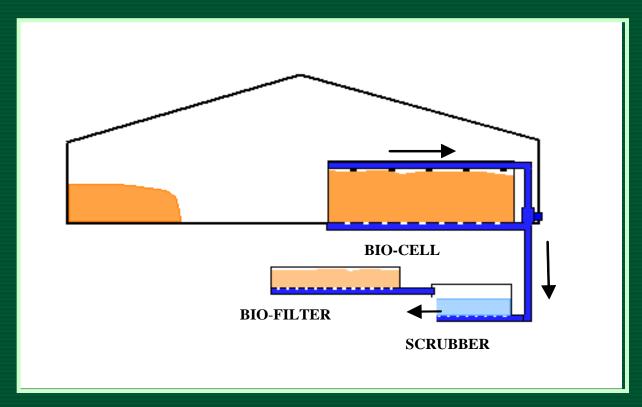
Views of Completed Facility

 Mobile equipment to mix biosolids and bulking agent



Views of Completed Facility

Planta tipo Bandeja en proceso de Construcción, Demostrando las Cañerías para Aireación


Cale Kedovery

Vista de un Reactor Cilindrico Rotatorio

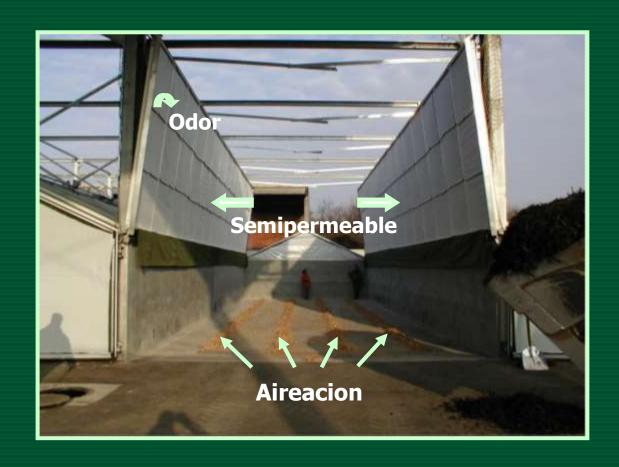
Califredovery

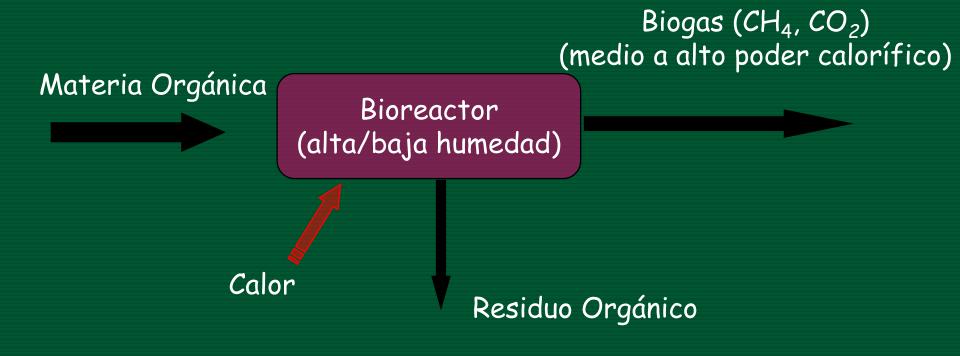
Esquema de una planta de Compostaje tipo Biocell, Mostrando método de Captación y Tratamiento de los Gases en un depurador liquido y en un biofiltro

Bioceldas Estáticas

CallRedovery

Ejemplo de un Biotunel





Call Recovery

Modulo de Compostaje Biodegma

Esquema del proceso de Biogasificacion

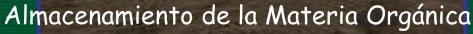
CaiRecovery

Instalaciones de Digestión Anaerobia en Europa en el 2007

Sistema	No. de Plantas	Capacidad (Mg/a)
MAT/BAT	9	213,000
KOMPOGAS	33	653,500
OWS/DRANCO	15	490,000
LINDE/BRV	12	517,000
VALORGA	11	970,000
Otras	29	943,500
Totales	109	3,787,000

Digestión Húmeda

Calification


Digestión Húmeda

Digestion Anaerobia en Tunel (Seca)

Reactores (aislamiento en proceso de instalación)

Call Recovery

Reactor Tipo Túnel (seco)

Disposición Final

- Reducción de materia orgánica en el relleno
- Captación y tratamiento del biogas y del lixiviado
- Celdas operadas como bioreactores
- Rellenos sustentables

Tecnología Alta versus Baja

- El diseñar algo dentro de ciertas limitaciones significa "lograr mas con menos"
- En general, incapacidad o falta de voluntad para imponer límites es un grave error
- En la gestión de residuos, grandes infusiones de dinero y equipo, por sí solas, no pueden resolver los problemas
- Es necesario determinar la disponibilidad de recursos económicos y de mano de obra

Tecnología Alta versus Baja

- La gestión adecuada de RSU es una compleja, costosa tarea que no tiene por qué ser más compleja mediante la búsqueda de costosas y complejas soluciones
- A la persona mal informada, la disposición final en el suelo o la incineración parecen ser las más opciones simples

Países Industrializados

- Principales diferencias entre países industrializados y países en vías de desarrollo: reducción de la generación de residuos y recuperación de materiales
- Reducción de mercados para materiales reciclados
- Reducción de materiales recolectados y depositados en rellenos
- Marco legal para la reducción de residuos bien establecido
- Publico o consumidor dispuesto a financiar varias iniciativas para la reducción de los residuos

Países en Vías de Desarrollo

- Reducción de residuos ha sido practicada tradicionalmente
- Reducción de residuos no es legislada
- La mayor proporción de reducción de residuos se logra por medio de una red de compradores que circulan las calles, intermediarios y otros
- Una gran costumbre de reparación y re-uso

Califedovery

Call Redovery

Call Recovery

Call Recovery

Califedovery

Conclusiones

- Ineficiencias en la recolección y el transporte de residuos orgánicos es un impedimento serio a que estos residuos puedan contribuir sustancialmente a la generación de energía
- Es necesario mas investigación y desarrollo para mejorar la eficiencia de los procesos para convertir residuos a energía y por lo tanto reducir los costos de generación

Conclusiones (cont.)

- Información limitada o contradictoria para tomar buenas decisiones
- Se necesita información confiable y basada en trabajo científico
- Optimización de diseños de bio-reactores y la rápida remoción y purificación de gases ofrece buenas posibilidades para los sistemas de bio-hidrogeno

Conclusiones (cont.)

- Entender que "baja tecnologia" no significa "tecnologia de baja calidad"
- Países industrializados: reducción de residuos y reciclaje
- Países en vías de desarrollo: inicialmente mejorar las fases básicas del servicio

Conclusiones (cont.)

- Planificación responsable de la Gestión Integral de los RSU requiere un buen conocimiento de las características de los residuos, equipos, procesos (y sus limitaciones)
- Factores no-técnicos: grado de desarrollo económico, marco regulador, participación de la sociedad civil, programas de entrenamiento y capacitación
- Y