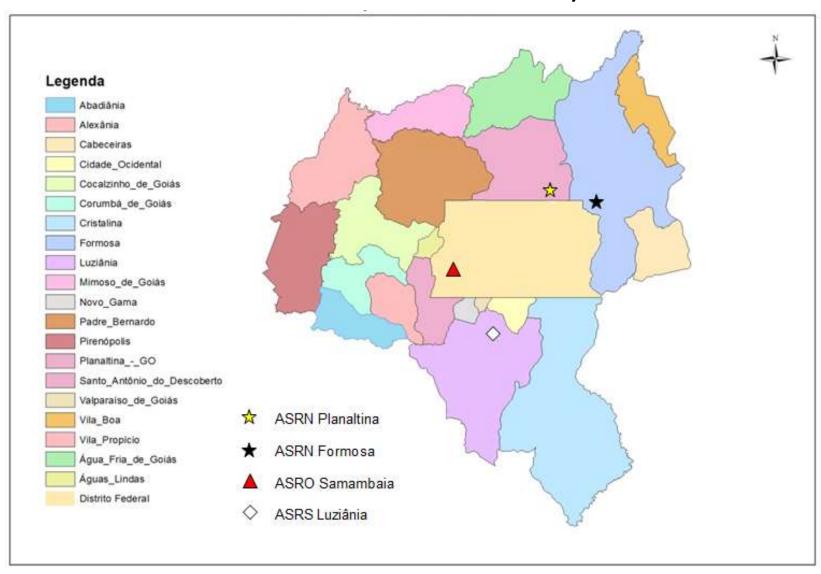


Otimização da alocação de cargas em aterros sanitários regionais


Eng. Marcos Helano Fernandes Montenegro Gestor Ambiental Thiago Faquineli Timóteo

CORSAP – DF/GO

- O Consórcio Público de Manejo dos Resíduos Sólidos e das Águas Pluviais da Região Integrada do Distrito Federal e Goiás foi fundado em julho de 2013;
- Congrega o DF e 20 munícipios goianos pertencentes à Região Integrada de Desenvolvimento do Distrito Federal e Entorno (RIDE/DF);
- Objetiva promover a gestão técnica, obter economias de escala, reduzir custos, elevar a qualidade e minimizar os impactos ambientais, privilegiando o Planejamento integrado do manejo dos resíduos sólidos urbanos

Territórios do CORSAP – DF/GO

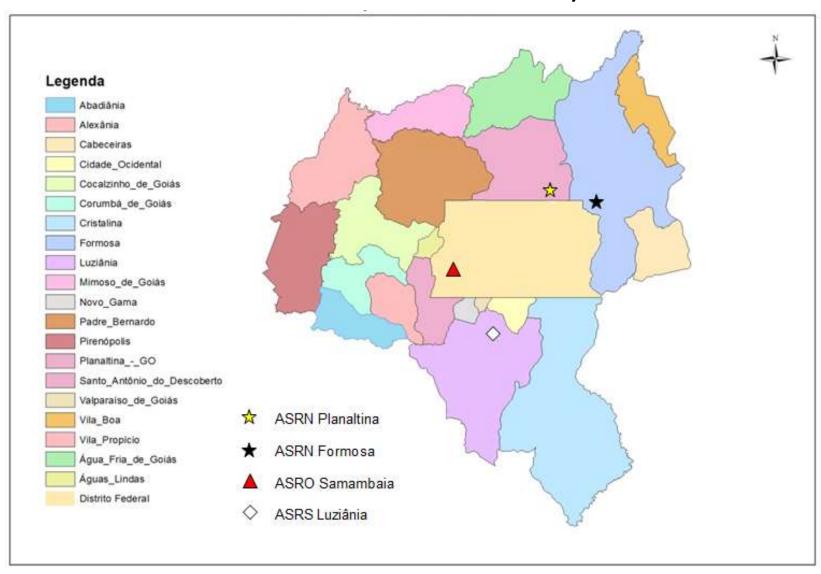
CORSAP – DF/GO

População total da área = 3,6 milhões de hab.;

- Bom sistema viário, acesso à todas as Regiões Administrativas (RAs) do DF e sedes municipais por vias pavimentadas;
- Atualmente, os resíduos do DF são dispostos no lixão da Estrutural, e os resíduos dos munícipios goianos da RIDE também têm disposição similar.

ASRO - Samambaia

- O GDF está implantando um aterro sanitário na RA de Samambaia que deverá, quando iniciar sua operação, permitir o encerramento do lixão localizado na Cidade Estrutural (RA SCIA);
- No licenciamento ambiental do aterro sanitário de Samambaia existe a previsão de implantação de um aterro sanitário ao norte do DF, que poderá ser localizado em Planaltina (DF), em Planaltina (GO) ou ainda em Formosa (GO).



ASRO - Samambaia

 Nas discussões prévias à constituição do consórcio se verificou a conveniência de prever a implantação de um terceiro aterro sanitário ao sul do DF.

 Nessas condições a região disporia de três aterros sanitários regionais, posicionados estratégicamente para atender os três eixos de adensamento populacional.

Territórios do CORSAP – DF/GO

O problema

Informar o processo de tomada de decisão quanto à localização e quantidade de aterros sanitários regionais e de unidades de transbordo, permitindo quantificar, com flexibilidade e agilidade:

- ➤ a influência de cada alternativa de localização de aterro regional no custo global do sistema regional de transbordo, transporte e aterramento de rejeitos;
- ➤ a influência no custo da não implantação de um ou dois dos três aterros regionais;

O problema

Informar o processo de tomada de decisão quanto à localização e quantidade de aterros sanitários regionais e de unidades de transbordo, permitindo quantificar, com flexibilidade e agilidade:

- > a composição do custo total do sistema e de sua composição (transbordo, transporte e aterramento);
- ➤ a influência de custos diferentes de aterramento nas três instalações regionais;

Desenvolvimento do Modelo

Informar o processo de tomada de decisão quanto à localização e quantidade de aterros sanitários regionais e de unidades de transbordo, permitindo quantificar, com flexibilidade e agilidade:

- ➤ a influência de limites mínimos e máximos de carga média diária em cada aterro regional;
- ➤ a influência nos custos do valor assumido como distância limite para a descarga direta dos caminhões de coleta nos aterros sanitários e nas unidades de transbordo regionais.

Metodologia

 O objetivo do modelo é otimizar o custo total, minimizando a soma dos custos de transporte, transbordo e aterramento, indicando o destino final mais econômico para as cargas geradas em cada localidade. A princípio, o modelo assume que haverá uma estação de transbordo em cada localidade;

 Com esta finalidade a seguinte função objetivo foi desenvolvida, que minimiza o custo total diário alocando as cargas originadas em cada uma das localidades consideradas nos três aterros regionais, utilizando estação de transbordo local ou por meio de descarga direta:

Função objetivo

$$Min C_{tot} = C_{tb} + C_{tp} + C$$

Onde:

 C_{tot} = custo total;

 C_{tb} = custo de transbordo;

C_{tp} = custo de transporte e;

 C_{at} = custo de aterramento.

Função objetivo

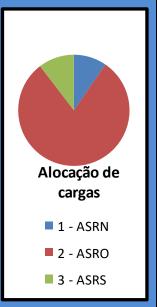
- O custo de transbordo é calculado pelo produto das cargas diárias de rejeitos transbordados (em t/dia) por um custo unitário médio (C_{tbm}), expresso em R\$/t;
- O custo de transporte é calculado pelo produto das cargas diárias de rejeitos transportados (em t/dia) pelas respectivas distâncias rodoviárias (em km) por um custo unitário médio (C_{tpm}), expresso em R\$/t/km;
- O custo de aterramento é calculado pelo produto das cargas diárias de rejeitos aterrados (em t/dia) pelo custo unitário de cada um dos três aterros (C_{at.i}, com j=1 a 3), expresso em R\$/t;

Metodologia

 Para o estudo de otimização de distribuição de cargas nos 3 aterros, foi desenvolvido um modelo de programação linear, utilizando o algoritmo LP Simplex disponível no suplemento Solver do Microsoft Excel 2010.

Entradas do Modelo

	Localidade	1 ASRN Planaltina GO	1 ASRN Formosa GO	2 ASRO Samambaia DF	3 ASRS Luziânia GO
26	Ceilândia	74	97	6	55
27	Cruzeiro	56	79	23	69
28	Gama	84	107	20	38
29	Guará	63	86	14	62
30	Itapoã	54	68	56	77
31	Jardim Botânico	74	92	46	59
32	Lago Norte	49	72	33	66
33	Lago Sul	64	87	25	66
34	Núcleo Bandeirante	65	88	12	48
35	Paranoá	84	66	45	73
36	Park Way	72	94	38	48
37	Planaltina	17	40	60	95
38	Recanto das Emas	78	101	6	46
39	Riacho Fundo	70	93	7	53
40	Riacho Fundo II	81	102	7	53
41	Samambaia	77	100		52
42	Santa Maria	80	103	20	32
43	São Sebastião	85	108	42	61
44	SCIA - Estrutural	64	88	30	66
45	SIA	60	85	31	57
46	Sobradinho I	33	56	44	78
47	Sobradinho II	44	66	54	78
48	Sudoeste/ Octogonal	61	84	33	58
49	Taguatinga	69	92	6	57
50	Varjão	54	75	50	71
51	Vicente Pires	71	97	21	68
Total		4.422	5.415	2.658	4.401


Saída do Modelo

Modelo de alocação regional de cargas em até três aterros sanitários Minimização do custo total de transporte e aterramento

min custo total $C_{tot} = C_{tb} + C_{tp} + C_{at}$

R\$ 221.162,58

Resultados						
Aterro Regional	Carga diária (t)	Custos (R\$)	Custo diário (R\$)	%		
1 - ASRN	331	50,00	16.547,55	7%		
2 - ASRO	2.765	50,00	138.253,18	63%		
3 - ASRS	359	50,00	17.937,89	8%		
Total do aterramento	3.455		172.738,61	78%		
Descarga direta	2.065	0,00	0,00	0%		
Descarga em transbordo	1.389	8,00	11.115,06	5%		
Transporte (km.t)	62.182	0,60	37.308,91	17%		
Custo total diário (R\$)			221.162,58	100%		
Custo unitário (R\$/t)		64,02				

Restrições

51 restrições, estabelecendo que a soma das cargas originadas da localidade i encaminhadas para os três aterros devem igualar à quantidade diária total originada na mesma localidade:

$$c_i = c_{i1} + c_{i2} + c_{i3}$$

Para cada aterro foi estabelecida uma restrição de carga máxima diária:

$$\sum c_{i1} \le C_{max1}$$
, $\sum c_{i2} \le C_{max2}$ e $\sum c_{i3} \le C_{max3}$, para i=1 a 51,

e uma de carga mínima diária:

$$\sum c_{i1} \ge C_{min1}$$
, $\sum c_{i2} \ge C_{min2}$ e $\sum c_{i3} \ge C_{min3}$, para i=1 a 51

 O modelo desenvolvido foi testado, utilizando <u>valores</u> <u>hipotéticos de custo</u>, prevendo o atendimento da demanda regional com até três aterros, adotando as cargas diárias previamente calculadas, em seis casos (cenários) utilizando os valores de entrada constantes da tabela abaixo:

Entradas	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6
Dlim (km)	25	20	25	25	25	25
Pat1 (R\$/t)	50,00	50,00	50,00	50,00	50,00	40,00
Pat2 (R\$/t)	50,00	50,00	50,00	50,00	50,00	60,00
Pat3 (R\$/t)	50,00	50,00	50,00	50,00	50,00	50,00
Ptb (R\$/t)	8,00	8,00	8,00	8,00	8,00	8,00
Ptp (R\$/t/km)	0,60	0,60	0,60	0,60	0,60	0,60
Cmax1 (t)	3.500	3.500	2.500	0	2.500	2.500
Cmax2 (t)	3.500	3.500	2.500	2.500	2.500	2.500
Cmax3 (t)	3.500	3.500	2.500	2.500	0	2.500
Cmin1 (t)	0	0	400	0	400	400
Cmin2 (t)	0	0	400	400	400	400
Cmin3 (t)	0	0	400	400	0	400

Resultados	Caso 1ª	Caso 2a	Caso 3a	Caso 4a	Caso 5a	Caso 6a
c _{at1} (t)	331	331	500	0	955	699
c _{at2} (t)	2.765	2.765	2.500	2.500	2.500	2.277
c _{at3} (t)	359	359	454	955	0	478
c _{dd} (t)	2.065	1.504	2.065	1.975	1.744	2.065
C _{tb} (t)	1.389	1.950	1.389	1.479	1.711	1.389
C _{at} (R\$)	172.738,61	172.738,61	172.738,61	172.738,61	172.738,61	188.520,11
C _{tb} (R\$)	11.115,06	15.602,63	11.115,06	11.835,67	13.687,01	11.115,06
C _{tp} (R\$)	37.308,91	44.361,28	38.828,92	53.452,37	58.339,43	41.790,56
C _{tot} (R\$)	221.162,58	232.702,52	222.682,59	238.026,65	244.765,05	241.425,73
C _{tu} (R\$/t)	64,02	67,36	64,46	68,90	70,85	69,88

Ressultantbos com atterno samitário negional Monte localizantbo em Floradois a ((GCO))

 O modelo também forneceu as localidades que deverão se utilizar de descarga direta, o que depende apenas do valor da distância limite (Dlim) e do número e localização dos aterros sanitários em operação

Dlim =	= 20 km	Dlim = 25 km		
Águas Claras	Planaltina	Águas Claras	Planaltina de Goiás	
Candangolândia	Planaltina de Goiás	Candangolândia	Recanto das Emas	
Ceilândia	Recanto das Emas	Ceilândia	Riacho Fundo	
Guará	Riacho Fundo	Cidade Ocidental	Riacho Fundo II	
Luziânia	Riacho Fundo II	Cruzeiro	Samambaia	
Núcleo Bandeirante	Samambaia	Gama	Santa Maria	
	Taguatinga	Guará	Stº. Antônio do Desc.	
		Luziânia	Taguatinga	
		Núcleo Bandeirante	Valparaíso de Goiás	
		Planaltina	Vicente Pires	

Localidades com descarga direta

cargas

aterros

Destinação das cargas (t/dia)

• O m(... prover ½ sanitáı ½

		Aterros sanitários regi	onais	1 - ASRN	2 - ASRO	3 - ASRS	
(Loc	Nome	Quantidade (t/dia)	1 Formosa GO	2 Samambaia DF	3 Luziânia GO	as
r	L26	Ceilândia	404	0	404	0	ês
		Cruzeiro	31	0	31	0	
ł	L28	Gama	127	0	127	0	
•	L29	Guará	108	0	108	0	
	L30	Itapoã	56	0	56	0	
	L31	Jardim Botânico	24	0	24	0	
	L32	Lago Norte	34	0	34	0	
	L33	Lago Sul	30	0	30	0	
	L34	Núcleo Bandeirante	23	0	23	0	
	L35	Paranoá	42	0	42	0	
	L36	Park Way	20	0	20	0	
	L37	Planaltina	162	162	0	0	
	L38	Recanto das Emas	125	0	125	0	
	L39	Riacho Fundo	35	0	35	0	
	L40	Riacho Fundo II	37	0	37	0	
	L41	Samambaia	202	0	202	0	
	L42	Santa Maria	119	0	119	0	
	L43	São Sebastião	78	0	78	0	
	L44	SCIA - Estrutural	32	0	32	0	
	L45	SIA	2	0	2	0	
	L46	Sobradinho I	59	0	59	0	
	L47	Sobradinho II	94	0	94	0	
	L48	Sudoeste/Octogonal	52	0	52	0	
	L49	Taguatinga	198	0	198	0	
	L50	Varjão	9	0	9	0	
	L51	Vicente Pires	68	0	68	0	
	Tota	ais	3.455	331	2.765	359	

Total

Resultados

80.724.341,32

	Custo anual por município e	DF	
Δ tahe Nome		(R\$/ano)	
Λ COOC Ahadiânia		294.542,94	or unidade
federa Água Fria de Goiá	5	95.146,51	
Águas Lindas de G	oiás	3.351.629,28	
Alexânia		445.151,08	
Cabeceiras		137.467,08	
Cidade Ocidental		1.045.209,65	
Cocalzinho de Goi	ás	325.386,11	
Corumbá de Goiás	5	193.676,42	
Cristalina		870.712,07	
Formosa		2.104.731,00	
Luziânia		3.670.288,31	
Mimoso de Goiás		50.190,25	
Novo Gama		1.776.155,42	
Padre Bernardo		517.249,33	
Pirenópolis		430.047,27	
Planaltina de Goiá	S	1.526.250,96	
Stº. Antônio do De	escoberto	1.182.284,18	
Valparaíso de Goia	ás	2.796.536,32	
Vila Boa		88.510,56	
Vila Propicio		96.099,84	
Distrito Federal		59.727.076,75	

Discussão dos resultados

Consideradas as hipóteses assumidas, o ASRO (Samambaia) é o mais atrativo dos três aterros regionais em razão da sua posição privilegiada, chegando a receber 74% da carga total em alguns dos casos;

Assumidos custos unitários de aterramento idênticos, verificouse que o ASRN, quando localizado em Planaltina, é mais atrativo que o ASRS;

A fixação de valores mínimos de 400t e máximos de 2.500t de carga diária para qualquer dos três aterros regionais, examinada no Caso 4, teve pouco impacto em relação ao custo do Caso 1, o que é um fato positivo pois indica a segura viabilidade de operar os três aterros regionais com economia de escala;

Discussão dos resultados

Como seria de se esperar, o Caso 2 apresentou custo maior que o Caso 1, em razão da diminuição da distância limite para descarga direta de 25 km para 20 km;

A comparação dos resutados obtidos nos Casos 1 e 3 com os dos Casos 4 e 5 indica a conveniência de operar com os três aterros simultaneamente;

Os resultados do Caso 6 ilustram que a ocorrência de custos unitários diferentes nos três aterros pode modificar significativamente a distribuição ótima de cargas nos três aterros.

Discussão dos resultados

Em qualquer situação, a opção de localização do ASRN em Formosa eleva os custos, o que é de se esperar, pois Formosa está mais longe das localidades com potencial para utilizar este aterro;

Os resultados obtidos permitem estabelecer o número de unidades de transbordo local para cada um dos dois valores assumidos para a distância limite para descarga direta de caminhões coletores em aterro, conforme demonstrado na tabela "Localidades com descarga direta";

A distribuição das cargas provenientes das diversas localidades nos três aterros sanitários regionais, conforme ilustrado pela tabela de destinação das cargas, é informação relevante para o dimensionamento e planejamento operacional do sistema de transporte de rejeitos a partir das unidades de transbordo local.

Conclusão

O modelo presta-se a informar o planejamento regional, permitindo:

-avaliar variações do custo total decorrentes de alterações no número e no posicionamento dos aterros regionais, bem como de outras restrições (a exemplo das capacidades dos aterros), e

- quantificar o custo de decisões na busca de um serviço público eficiente.

Obrigado!

Eng. Marcos Helano F. Montenegro
Engenheiro Civil e Mestre em Engenharia Urbana
Regulador de serviços públicos
marcos.montenegro@adasa.df.gov.br

Metodologia

Distâncias rodoviárias de cada localidade;

Localidade		1 ASRN Planaltina GO	1 ASRN Formosa GO	2 ASRO Samambaia DF	3 ASRS Luziânia GO
24	Brazlândia	97	116	39	86
25	Candangolândia	67	90	14	48
26	Ceilândia	74	97	6	55
27	Cruzeiro	56	79	23	69
28	Gama	84	107	20	38
29	Guará	63	86	14	62
30	Itapoã	54	68	56	77
31	Jardim Botânico	74	92	46	59
32	Lago Norte	49	72	33	66
33	Lago Sul	64	87	25	66
34	Núcleo Bandeirante	65	88	12	48
35	Paranoá	84	66	45	73
36	Park Way	72	94	38	48
37	Planaltina	17	40	60	95
38	Recanto das Emas	78	101	6	46
39	Riacho Fundo	70	93	7	53
40	Riacho Fundo II	81	102	7	53
41	Samambaia	77	100		52
42	Santa Maria	80	103	20	32
43	São Sebastião	85	108	42	61
44	SCIA - Estrutural	64	88	30	66
45	SIA	60	85	31	57
46	Sobradinho I	33	56	44	78
47	Sobradinho II	44	66	54	78
48	Sudoeste/ Octogonal	61	84	33	58
49	Taguatinga	69	92	6	57
50	Varjão	54	75	50	71
51	Vicente Pires	71	97	21	68
Total		4.422	5.415	2.658	4.401

Função objetivo

- Nos casos de descarga direta, os custos de transbordo e de transporte são assumidos como nulos;
- As distâncias utilizadas não consideram os percursos de retorno, o que foi considerado no estabelecimento da hipótese do custo unitário de transporte;
- Os resultados fornecidos pela modelagem são as cargas diárias em cada aterro (em t), lançadas diretamente ou por meio de transbordo, a destinação específica dos rejeitos gerados em cada localidade, o custo total de aterramento em cada aterro (R\$), os custo de transbordo e de transporte (R\$), o custo total (R\$) e o custo unitário médio (R\$/t).

Metodologia

- As cargas diárias de rejeitos originadas em cada localidade são calculadas com base na população total o valor per capita estimado com base em médias típicas, descontada uma taxa de recuperação de resíduos recicláveis e compostáveis, estes dois últimos valores sendo tratados como variáveis de entrada do modelo;
- Carga média total de rejeitos = 3.455 t/dia;
- Foram consideradas as distâncias rodoviárias pavimentadas de menor extensão utilizando o Google Maps;
- Os custos de transporte, de transbordo e de aterramento são também variáveis de entrada de modo a permitir flexibilidade no uso do modelo.

Definição de variáveis

 L_i = Localidade i (i=1 a 51)

P_i = população total de cada localidade (i=1 a 51)

G_i = geração de cada localidade (com i=1 a 51), (kg/hab/dia)

T_i = taxa de recuperação de cada localidade (i=1 a 51), (%)

d_{i,j} = distância rodoviária de cada localidade a cada aterro sanitário (i=1 a 51 e j=1 a 3), (km)

C_{tbm} = custo unitário médio de transbordo (R\$/t)

Definição de variáveis

C_{tpm} = custo unitário médio de transporte (R\$/t/km)

 $C_{at,i}$, = custo unitário do aterro j (com j=1 a 3), (R\$/t)

 C_{jmax} = capacidade máxima diária do aterro sanitário j (j =1 a 3), (em t/dia)

 C_{jmin} = capacidade mínima diária do aterros sanitário j (j =1 a 3), (em t/dia)

c_i = carga diária de rejeitos da localidade i (i =1 a 51), (t/dia)

 c_{ij} = carga diária de rejeitos da localidade i destinada ao aterro sanitário j (i =1 a 51 e j = 1 a 3), (t/dia)

Definição de variáveis

c_i = cargas diária destinada ao aterro j (t/dia)

 c_{dj} = carga diária descarregada diretamente no aterro j (j =1 a 3), (t/dia)

C_{at} = custo diário de aterramento (R\$/dia)

C_{tb} = custo diário de transbordo (R\$/dia)

C_{tp} = custo diário de transporte (R\$/dia)

 C_{tot} = custo diário total (R\$/dia)

C_{um}= custo unitário médio (R\$/t)

Conclusão

O modelo revelou-se ferramenta útil, flexível e ágil, pois forneceu resultados para diversos cenários, simulando o atendimento com um, dois ou três aterros sanitários regionais, estimando custos ótimos para as diferentes alternativas estudadas e assim permitindo compará-las de modo objetivo, bem como subsidiar a localização e o dimensionamento de unidades de transbordo.

Desse modo, o modelo presta-se a informar o planejamento regional, permitindo avaliar variações do custo total decorrentes de alterações no número e no posicionamento dos aterros regionais, bem como de outras restrições (a exemplo das capacidades dos aterros), e assim quantificar o custo de decisões na busca de um serviço público eficiente.