Phases of investigation:

- 1. Analysis of existing geological information
- 2. New drilling campaign
- 3. Coring and sampling campaign
- 4. In-situ and laboratory campaign
- 5. Geophysical prospections (electrical, physical and seismic methods)
- 6. Analysis of fractures
- 7. Well inventory well logging
- 8. Observation of water levels

Critical factors assessing the necessity of increasing the frequency of drilling/sampling:

- 1. Fractures
- 2. Geological formation discontinuities
- 3. Facies transitions and expected permeability variations

Methods employed to determine site geology:

- 1. Direct methods
- 2. Geophysical Methods
- 3. Drive Methods

Direct Methods:

Soil or rock sampling through the use of hand augers, trenches or boreholes

Geophysical Methods (reduce cost; useful for preliminary investigation)

Electrical/electromagnetic methods (measure resistivity and conductivity of fluid and surroundings rocks)

Nuclear methods (use natural or artificial source of radiation and detectors)

Acoustic/seismic methods (analyse elastic response of subsurface rock)

(and surface geophysical methods)

method	general application	continuous measurements	depth of penetration	major limitations
Radar	profiling and mapping; highest resolution of any method	yes	to 30 m (typically less than 10 m)	Penetration limited by soil conditions
EM (Frequency- domain)	profiling and mapping; very rapid measurements	yes (to 50 feet) •	to 60 m	Affected by cultural features (metal fences, pipes, buildings, vehicles)
EM (time-domain)	soundings or profiling and mapping	no	to few hundred meters	Does not provide measurements shallower than 150 feet
Resistivity	soundings or profiling and mapping	no	No limit (commonly used to 100 to 300 m)	Requires good ground contact and long electrode arrays Integrates a large volume of subsurface Affected by cultural features (metal fences, pipes, buildings, vehicles)
Seismic refraction	profiling and mapping soil and rock	no	No limit (commonly used to 100 to 300 m)	Requires considerable energy for deeper surveys Sensitive to ground vibrations
Seismic reflection	profiling and mapping soil and rock	no	to few hundred meters	Shallow surveys, <100 feet are most critical Sensitive to ground vibrations
Micro gravity	profiling and mapping soil and rock	no	No limit (commonly used to 100 to 300 m)	Very slow, requires extensive data reduction Sensitive to ground vibrations
Magnetics	profiling and mapping soil and rock	yes	No limit (commonly used to 100 to 300 m)	Only applicable in certain rock environments Limited by cultural ferrous metal features

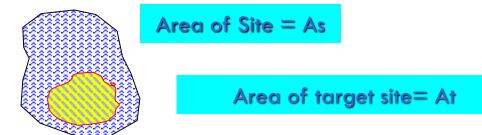
* Applications and comments should only be used as guidelines. In some applications, an alternate method may provide better results.

Drive Methods:

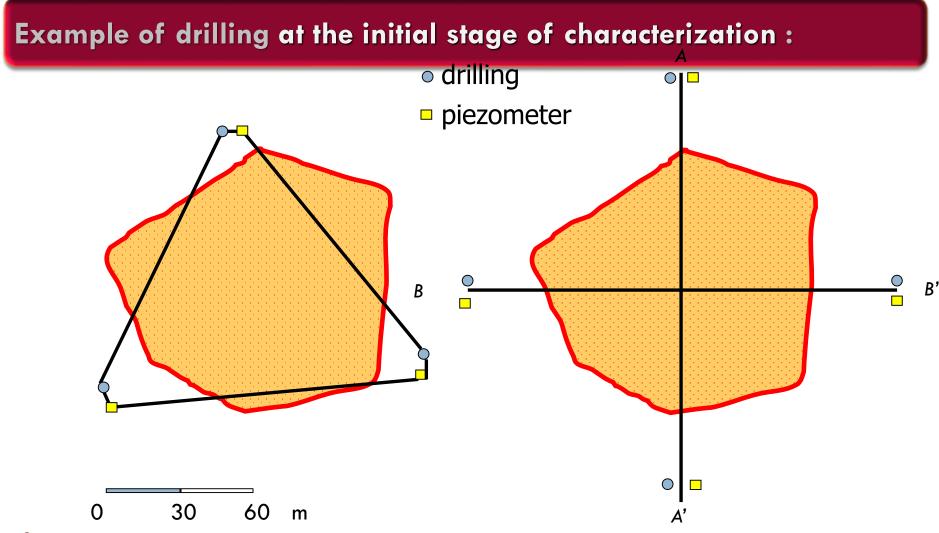
Cone Penetrometry (measures resistance to penetration)

Direct push methods, such as Geoprobe (use percussion hammers and static vehicle weight combined with hydraulic cylinders to advance tools to depth)

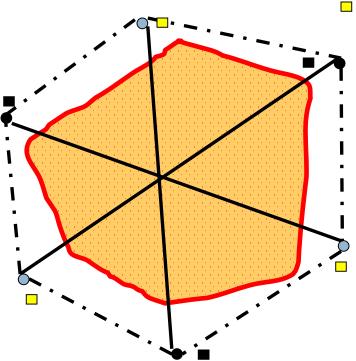
Methods to determine site hydrogeology:


1. Piezometers and Monitoring wells

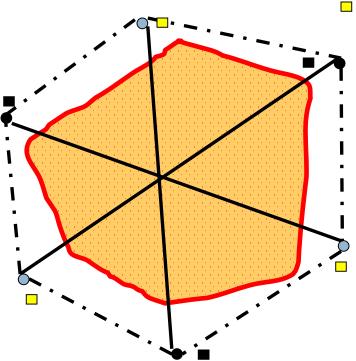
2. In-situ hydraulic conductivity testing (packer tests, slug tests, pumping tests)


3. Drive Methods

Properties to be considered	Requirements		
Porosity (primary and effective)	Low permeability (horizontal and vertical)		
Plasticity index	High Plasticity Index		
Carbonate content	Low Carbonate content		

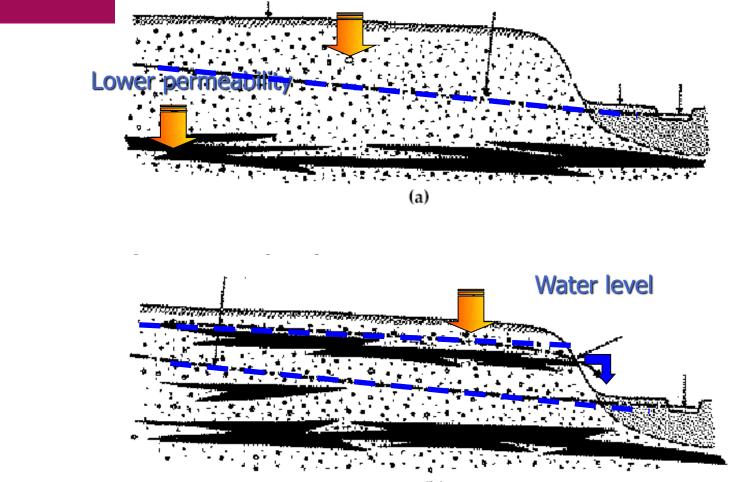

Sample density:

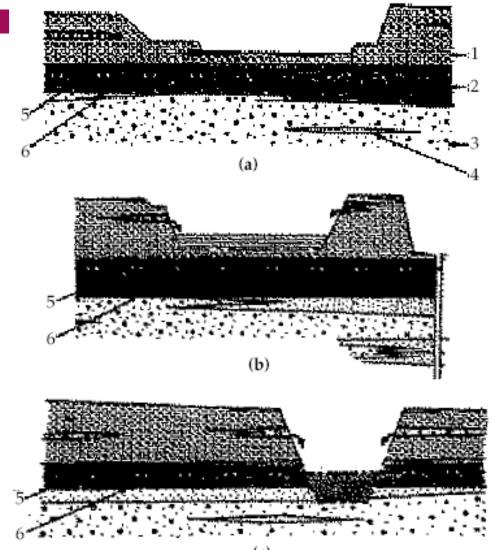
Probability of Detection	As/At = 10	As/At = 100	As/At = 1000
100	16	160	1600
98	13	130	1300
90	10	100	1000
75	8	80	800
50	5	50	500
40	4	40	400
30	3	30	300

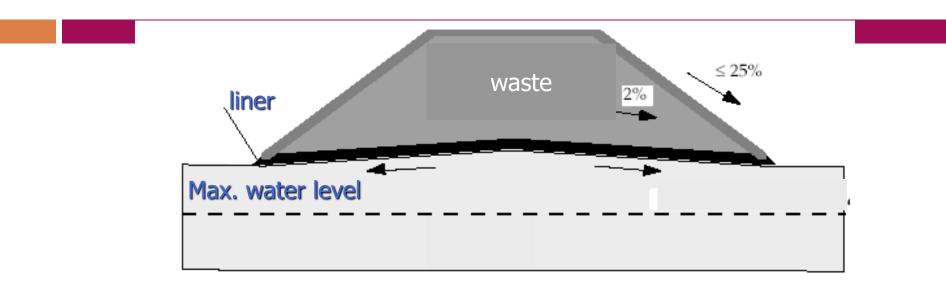

Example of drilling for further characterization :

• drilling

- piezometer
 - additional drilling
 - additional piezometer

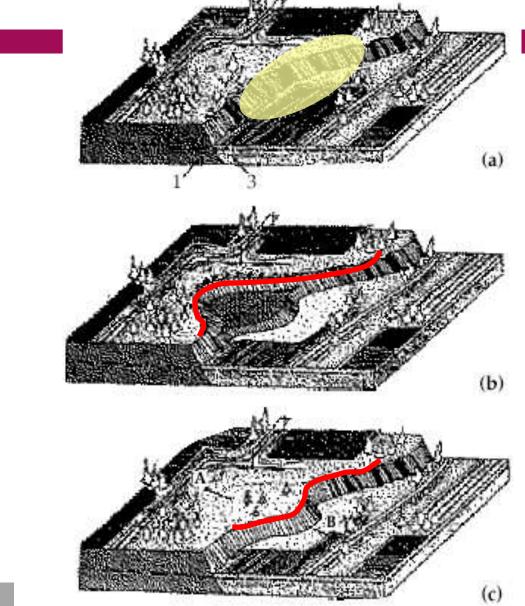

Example of drilling for further characterization :

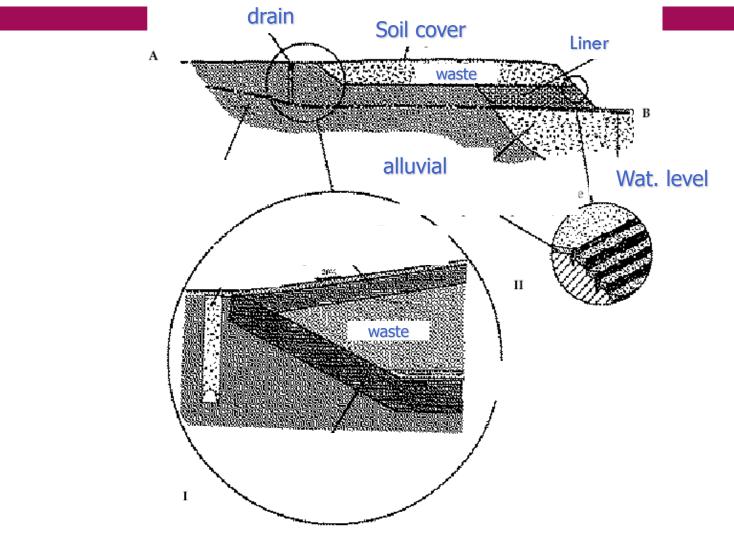


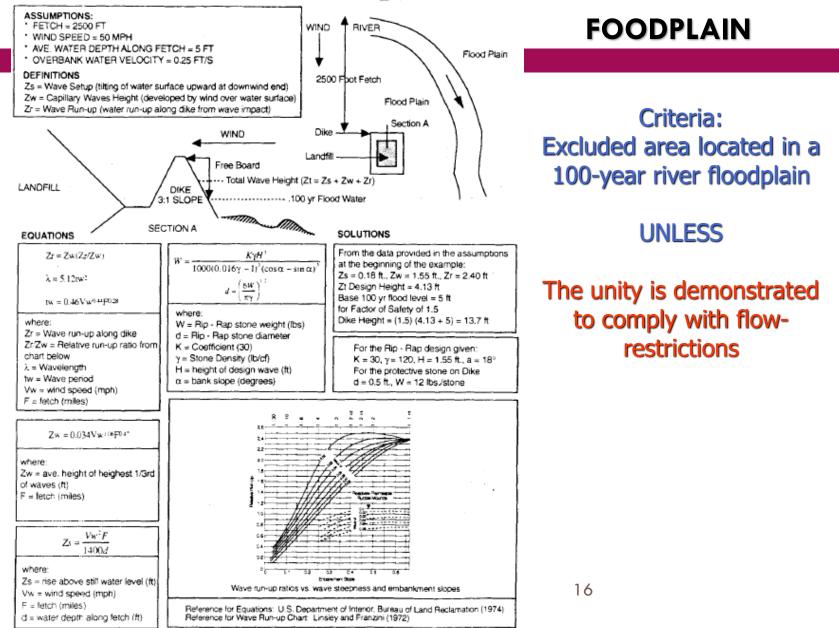

• drilling

- piezometer
 - additional drilling
 - additional piezometer

Higher permeability


Issues to be considered:


Impact on landscape


Waste can be visible during landfill operation

Daily cover material

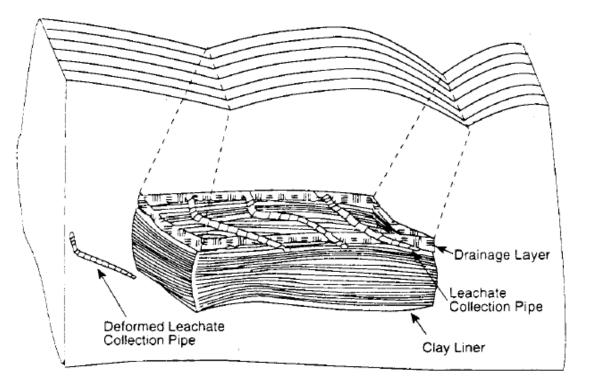
Waste disposal can be more complex

New MSWLF units shall not be located within 60 m of a fault that has had displacement in Holocene unless it is demonstrated that the alternative setback distance of less than 60 m will prevent damage to the structural integrity of the MSWLF unit and do not pose environmental hazard

If a fault is situated within 3000 ft of the proposed unit, investigation should be conducted within 60 m:

Subsurface exploration, including drilling and trenching, to locate fault zones and evidence of faulting. Trenching perpendicular to any faults or lineaments within 200 feet of the unit. Determination of the age of any displacements Examination of seismic epicenter information to look for indications of recent movement or activity along structures in a given area Review of high altitude, high resolution aerial photographs with stereo-vision coverage 17

If an alternate setback is requested:

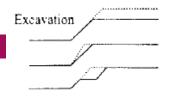

For zones with high probabilities of high accelerations (horizontal) within the moderate range of 0.1g to 0.75g, seismic designs should be developed

Seismic stability analysis of landfill slopes should be performed to guide selection of materials and gradients for slopes

Where in-situ and laboratory tests indicate that a potential landfill site susceptible to liquefaction, ground improvement measures like grouting, dewatering, heavy tamping, and excavation should be implemented

From US EPA

Example of engineering solution: flexible pipes, secondary containment systems and ground improvement measures



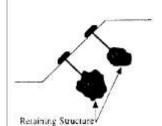
A schematic diagram of a landfill showing potential deformation of the leachate collection and removal system by seismic stresses.

Source: US EPA, 1992

From US EPA

Landfill Siting - Stability

2. Earth Berm Fill


1. Reduce slope height by excavation at the top

- 2. Flatten the slope angle
- 3. Excavate a bench in the upper part of slope

Retaining Structure 1. Compacted earth or rock berm placed at end beyond the toe. Drainage should be provided behind the berm

Retaining Structure 1. Earth and rock angles

From US EPA

20